DOI: 10.32364/2618-8430-2018-1-2-148-155

Мио-инозитол: микронутриент для «тонкой настройки» женской репродуктивной сферы

К.х.н. И.Ю. Торшин¹, профессор О.А. Громова¹, к.м.н. А.Г. Калачёва², профессор Н.К. Тетруашвили³, к.м.н. В.И. Демидов²

1 ФИЦ ИУ РАН, Москва, Россия

² ФГБОУ ВО ИвГМА Минздрава России, Иваново, Россия ³ ФГБУ «НМИЦ АГП им. В.И. Кулакова» Минздрава России, Москва, Россия

РЕЗЮМЕ

Мио-инозитол необходим для синтеза сигнальных молекул инозитолфосфатов, участвующих в реализации эффектов репродуктивных гормонов. Недостаточная обеспеченность мио-инозитолом ассоциирована с нарушениями менструального цикла, бесплодием, поликистозом яичников и врожденными пороками плода. Дотации мио-инозитола улучшают формирование овуляторных циклов, зрелых ооцитов, повышают вероятность беременности, снижают риск фолат-резистентных пороков развития, гестационного диабета, макросомии плода. Мио-инозитол благоприятно воздействует на липидный профиль крови; препятствует избыточному набору веса при беременности, противодействует формированию глюкозотолерантности и инсулинорезистентности у женщин с нарушениями менструального цикла, снижает хроническое воспаление при атерогенном профиле крови. Мио-инозитол поддерживает противоопухолевый иммунитет. Уровень мио-инозитола в организме снижается при употреблении нефротоксичных лекарственных средств. Потребность в мио-инозитоле повышается при патологии почек (пиелонефрит, гломерулонефрит, диабетическая нефропатия, нефропатия беременных, почечная форма артериальной гипертензии и др.), при гипергликемическом типе питания.

Ключевые слова: мио-инозитол, овуляция, гормональные рецепторы, поликистоз яичников, фолат-резистентные пороки развития, Миоферт.

Для цитирования: Торшин И.Ю., Громова О.А., Калачёва А.Г. и др. Мио-инозитол: микронутриент для «тонкой настройки» женской репродуктивной сферы. РМЖ. Мать и дитя. 2018;1(2):148-155.

Myo-inositol: micronutrient for "fine tuning" of the female reproductive sphere

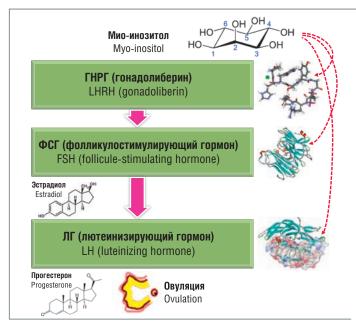
I.Yu. Torshin¹, O.A. Gromova¹, A.G. Kalacheva², N.K. Tetruashvili³, V.I. Demidov²

¹ Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, Moscow, Russian Federation

² Ivanovo State Medical Academy, Ivanovo, Russian Federation

³ V.I. Kulakov Research Center of Öbstetrics, Gynecology and Perinatology, Moscow, Russian Federation

ABSTRACT


Myo-inositol is necessary for the synthesis of signal molecules of inositol phosphates involved in effect mediation of reproductive hormones. Insufficiency of myo-inositol is associated with menstrual irregularities, infertility, polycystic ovaries and congenital malformations of the fetus. Myo-inositol supplement improves the formation of ovulatory cycles, mature oocytes, the probability of pregnancy; reduce the risk of folate-resistant malformations, gestational diabetes, and fetal macrosomia. Myo-inositol favorably affects the lipid profile of the blood; prevents excessive weight gain during pregnancy, counteracts the formation of glucose tolerance and insulin resistance in women with menstrual irregularities, reduces chronic inflammation in the atherogenic profile of the blood. Myo-inositol supports antitumor immunity. The level of myo-inositol in the body decreases with the use of nephrotoxic medicinal products. Myo-inositol dependence increases with kidney pathology (pyelonephritis, glomerulonephritis, diabetic nephropathy, nephropathy of pregnancy, renal form of hypertension, etc.), with hyperglycaemic type of nutrition. Key words: myo-inositol, ovulation, hormonal receptors, polycystic ovary, folate-resistant developmental defects, Miofert.

For citation: Torshin I.Yu., Gromova O.A., Kalacheva A.G. et al. Myo-inositol: micronutrient for "fine tuning" of the female reproductive sphere. Russian Journal of Woman and Child Health. 2018;1(2):148–155.

Введение

При гормональных формах бесплодия у пациенток отмечаются нарушения менструального цикла, ановуляция, синдром поликистоза яичников (СПКЯ), хроническое воспаление, избыточная масса тела и атерогенный профиль крови. Попытки преодоления бесплодия только на основе использования технологий гормональной стимуляции, без устранения вышеперечисленных фоновых патологий зачастую малорезультативны, а в случае зачатия могут приводить к формированию пороков развития плода. Одной из основополагающих причин коморбидности бесплодия и фоновых патологий является недостаточная обеспеченность микронутриентами (фолаты, мио-инозитол и др.) [1]. Поэтому индивидуально подобранная микронутриентная поддержка является основным инструментом для «тонкой настройки» репродуктивной функции, в т. ч. с целью формирования овуляторных циклов, зрелых ооцитов и профилактики пороков развития плода.

Мио-инозитол — эндогенный метаболит, необходимый для синтеза более 50 инозитолфосфатных производРМЖ. Мать и дитя

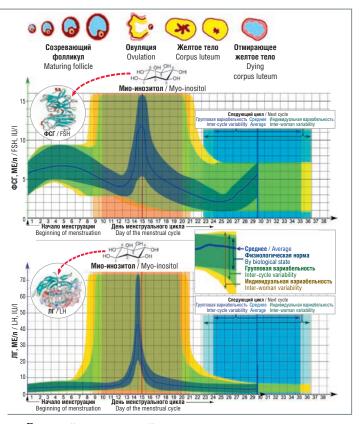

Рис. 1. Воздействие мио-инозитола на передачу сигнала от гонадолиберина (ГНРГ), лютеинизирующего гормона (ЛГ) и фолликулостимулирующего гормона (ФСГ)

Fig. 1. The effect of myo-inositol on the transmission of a signal from gonadoliberin (LHRH), luteinizing hormone (LH) and follicule-stimulating hormone (FSH)

ных, участвующих в передаче внутриклеточного сигнала от рецепторов гонадотропин-рилизинг гормона (ГНРГ), фолликулостимулирующего гормона (ФСГ), лютеинизирующего гормона (ЛГ), инсулина и др. [2]. Принципиальным условием синтеза достаточного количества мио-инозитола (2—3 г/сут) является совершенное здоровье почек. Их заболевания (пиелонефрит, гломерулонефрит, диабетическая нефропатия, почечная форма гипертензии и др.) и лекарственная нагрузка на этот орган резко снижают синтез мио-инозитола в почках. Соответственно, при любой патологии почек у пациентки возникает недостаточность мио-инозитола, для коррекции которой необходим прием данного микронутриента, в т. ч. с целью поддержки функционирования репродуктивной системы.

Для принятия врачом осознанного решения о необходимости назначения пациентке мио-инозитола необходимо понимание всего спектра его молекулярнофизиологических воздействий на репродуктивную сферу. В настоящей работе представлен анализ результатов исследований, в которых изучались эффекты мио-инозитола, проведенный посредством компьютерного анализа массива из 44 тыс. статей в рецензируемых научных журналах, опубликованных к 2018 г., на основе современных методов интеллектуального анализа данных [3].

Анализ показал, что десятки разновидностей рецепторов (например, рецепторы ГНРГ, ФСГ, ЛГ, гистаминовые, ГАМК и т. д.), будучи активированными, задействуют специальные сигнальные белки фосфоинозитолкиназы (в т. ч. РІЗК), приводящие к секреции кальция из эндоплазматического ретикулума клетки в цитозоль [2]. Кальций, диацилглицерол, циклический аденозинмонофосфат (цАМФ) и различные фосфат-производные мио-инозитола (фосфатидилинозитол и пр.) являются эссенциальными «вторичными сигналами» (англ. «secondary messenger»), участвующими в регуляции каскадных механизмов, выполняющих биологические роли соответствующих рецепторов.

В нашей предыдущей статье показано, что нарушения обмена мио-инозитола приводят к инсулинорезистентности, ГНРГ/ФСГ/ЛГ-резистентности клеток, нарушениям овуляции, торможению вызревания ооцитов (рис. 1) и ускоряют формирование поликистозных яичников [4]. В настоящей статье мы рассмотрим влияние мио-инозитола на репродукцию, иммунитет, лечение бесплодия, синергизм с фолатами и другими витаминами/минералами и профилактику врожденных пороков развития (ВПР).

Мио-инозитол и репродуктивная функция

Мио-инозитол и его производные необходимы для реализации эффектов гонадотропина, ЛГ и ФСГ — тем самым осуществляется значительное влияние на функционирование репродуктивной системы и фертильность (инвазия трофобласта при закреплении бластоцисты, функции яичников, ооцитов, плаценты). Следует также отметить, что мио-инозитол, воздействуя на соединительную ткань, не только влияет на состояние костей, кожи и ранозаживление, но и имеет принципиальное значение для физиологического развития эмбриона [5].

Как известно, СПКЯ является основной причиной бесплодия вследствие метаболических, гормональных дисфункций яичников. Поликистоз яичников сочетается с инсулинорезистентностью и компенсаторной гиперинсулинемией. Комбинированная терапия СПКЯ с включением мио-инозитола снижает риск нарушений обмена углеводов и жиров у пациенток с избыточной массой тела; положительно влияет на состояние гормональной регуляции и функции яичников [6].

Эффекты мио-инозитола в сочетании с фолиевой кислотой (ФК) были изучены в систематическом анализе 6 рандомизированных контролируемых исследований (РКИ) у женщин с СПКЯ (n=617). Результаты анализа позволяют рекомендовать использование комбинации мио-инозитол ($2-4~\mathrm{r/cyr}$) + ФК ($200-400~\mathrm{mkr/cyr}$) в течение $8-12~\mathrm{нед}$.

2018 T.1, №2 749

для улучшения функции яичников, а также метаболических и гормональных показателей у пациенток с СПКЯ [7]. Кроме того, прием мио-инозитола способствует улучшению показателей уровней триглицеридов, липопротеинов высокой плотности, холестерина и диастолического артериального давления [8].

Проспективное РКИ показало, что мио-инозитол улучшает функциональное состояние ооцитов у пациенток с СПКЯ, которым проводились циклы интрацитоплазматических инъекций сперматозоидов (ИКСИ). В группе, состоявшей из 70 женщин 18—35 лет, 35 пациенток с ановуляторным циклом получали 200 мкг/сут ФК и 2 г/сут мио-инозитола в течение 24 нед., а другие 35 пациенток — плацебо. После 24 нед. только 5 из 35 получавших мио-инозитол пациенток имели ановуляторный цикл, в то время как в контрольной группе такой цикл отмечался у 14 из 35 пациенток, что соответствовало 4-кратному снижению риска возникновения ановуляторного цикла: отношение шансов (ОШ) 0,25; 95% доверительный интервал (ДИ) 0,08—0,80, p=0,016) [9].

Иммунитет и мио-инозитол

Мио-инозитол необходим для функционирования Т-клеток и В-клеток, NK-лейкоцитов, макрофагов, нейтрофилов, тучных клеток, гранулоцитов, системы комплемента, интерферонов. Например, секреция провоспалительных факторов простагландина E2 (PGE2) и лейкотриена B4 (LTB4) мононуклеарными клетками периферической крови снижается при добавлении 600 мкмоль/л мио-инозитола в культуру [10]. Мио-инозитол ингибирует киназы Akt и ERK, вовлеченные в онкопролиферативные процессы, приводит к регрессии поражений бронхов при курении. Исследовались 206 биоптатов бронхов от курильщиков с большим стажем курения (n=21, возраст — 40-74 года, индекс курильщика >30 пачка/лет). В результате лечения мио-инозитолом отмечено снижение фосфорилирования Akt (p<0,01) и ERK (p<0,05) [11]. Таким образом, для поддержки укрепления противоопухолевого иммунитета необходим прием мио-инозитола.

Мио-инозитол и функционирование печени и почек

Состояние репродуктивной системы женщины напрямую зависит от эффективности функционирования печени и почек. Мио-инозитол оказывает значительное воздействие на функционирование печени, способствуя реализации биологических эффектов фактора роста гепатоцитов, стимулирует секрецию желчи, профилактирует развитие стеатогепатита и цирроза печени. Мио-инозитол поддерживает функции почечных канальцев, осуществляющих реабсорбцию необходимых организму макро- и микронутриентов из первичной мочи. При диабете отмечается ускоренная элиминация мио-инозитола: его средний уровень в моче у здоровых лиц составляет 5,6 мкг/мл, а у больных с почечной недостаточностью — 29 мкг/мл. Клиренс мио-инозитола у здоровых лиц составляет 2,8 мл/мин (при уровне реабсорбции 97%), а у пациентов с почечной недостаточностью может достигать 17 мл/мин, что свидетельствует о повышении его выведения с мочой [12]. Поэтому женщины с патологией печени и почек, в т. ч. в анамнезе, должны быть информированы о значении мио-инозитола для поддержки соматического и репродуктивного здоровья.

Мио-инозитол и профилактика пороков развития

В настоящее время отмечается рост числа случаев беременности в позднем возрасте, на фоне хронической патологии печени и почек, беременности в результате применения технологий ЭКО/ИКСИ; возрастает нагрузка токсикантами, антибиотиками, эстрогеновыми и другими «антивитаминными» препаратами. Как следствие, создается почва для формирования патологий беременности, ВПР и отклонений развития плода. Профилактика ВПР фолатами не всегда эффективна, т. к. фолаты — не единственный микронутриент, необходимый для физиологического развития плода. Например, нарушения нейруляции связаны с недостатком не только фолатов, но и витаминов А, В, В, цинка и мио-инозитола, причем только 70% дефектов нервной трубки (ДНТ) являются фолат-зависимыми [13]. В то же время повторные случаи формирования плодов с ДНТ, несмотря на дотации ФК беременным, указывают на существование фолат-резистентных ДНТ.

Важность применения мио-инозитола для профилактики ДНТ, в особенности фолат-резистентных, обусловлена тем, что производные мио-инозитола принимают комплексное участие в функционировании репродуктивной системы (формировании овуляторных циклов, зрелых ооцитов, эмбриогенезе и развитии плода [14]), применяются для профилактики экстрагенитальной патологии у беременной. Участие мио-инозитола и его производных в обеспечении функционирования рецепторов инсулина, гонадолиберина, ФСГ, ЛГ, факторов роста нервной ткани и др. обеспечивает не только нормальный ход эмбриогенеза и развития плода, но и функционирование сердечно-сосудистой, нервной систем, печени и почек [2]. Особым преимуществом профилактики ВПР мио-инозитолом является его высокий уровень безопасности — даже в дозе 12 г/сут он вызывает легкие побочные эффекты со стороны ЖКТ (тошнота, метеоризм, диарея) у отдельных пациенток [15]. В то же время в реальной клинической практике препараты мио-инозитола принимаются в дозах от 0,5 до 4,0 г/сут.

В экспериментальных и клинических работах показана эффективность приема мио-инозитола для профилактики пороков развития. Так, дотации мио-инозитола позволяют предупреждать ВПР, связанные с инсулинорезистентностью и гипергликемией, характерными для пациенток с избыточной массой тела и СПКЯ. Фосфат-производные мио-инозитола участвуют в процессах передачи сигнала от инсулинового рецептора [2], и поэтому его низкие концентрации в тканях эмбриона на этапе органогенеза могут индуцировать эмбриопатии, связанные с гипергликемией.

В эксперименте на моделях стрептозоцинового диабета у беременных крыс было показано, что содержание мио-инозитола в эмбрионах было ниже на 36% по сравнению с таковым в контрольной группе без диабета (p=0,01), ассоциировалось с задержкой развития эмбриона (его длина в основной группе — $3,37\pm0,04$ мм, в контрольной — $3,87\pm0,03$ мм, p=0,01); пониженным числом сомитов (в основной группе — $27,5\pm0,2$, в контрольной — $29,1\pm0,2$, p=0,01) и повышенной частотой патологий нервной системы (в основной группе — 17,6%, в контрольной — 1,9%, p<0,001) [16]. Прием мио-инозитола при стрептозоциновом диабете приводил к значительному снижению частоты развития ДНТ (в основной группе — 9,5%, в контроль-

2018 T.1, №2

РМЖ, Мать и дитя Обзоры

Таблица 1. Гены, мутации которых приводят к ДНТ в эксперименте, а соответствующие белки-ферменты нуждаются в определенных микронутриентных кофакторах (МНК)

Table 1. Genes, whose mutations lead to neural tube defect in the experiment and corresponding enzyme proteins in need of certain micronutrient cofactors (MNCs)

Form	DALII/	A		
Ген Gene	MHK MNC	Функция белка Protein function		
Gono				
Микронутриенты, специализирующиеся на защите генов развития плода / Micronutrients, specializing in the protection of fetation genes				
DNMT3B	B ₉ , Zn	Метилирование ДНК во время роста эмбриона / DNA methylation during embryo growth		
JMJ	B ₉	Змбриональное развитие сердца, печени и нервной трубки / Embryonic development of the heart, liver and neural tube		
GRHL3	B ₈	Нейруляция, линия мышей «закрученный хвост» / Neurulation, the line of curly-tail mice		
Tcfap2a	Α	Развитие нервной трубки, глаз, лица / Development of the neural tube, eyes, face		
BRCA1	Zn	Ремонт ДНК в ответ на повреждение ДНК / DNA repair in response to DNA damage		
Dbf4	Zn	Репликация ДНК во время размножения клеток / DNA replication during cell growth		
GLI3	Zn	Рост хондроцитов, формирование черепа и конечностей / Chondrocyte growth, skull and limbs formation		
Микронутриенты, специализирующиеся на защите генов развития клеток / Micronutrients, specializing in the protection of cell development				
FOG1	Zn	Дифференцировка мегакариоцитов / Differentiation of megakaryocytes		
Trp53	Zn	Регулировка роста/апоптоза клеток / Cell growth/apoptosis regulation		
ITGA6	Ca	Интегрин, рецептор ламинина / Integrin, laminin receptor		
MLP	Ca	Движение клетки за счет актинового цитоскелета / Cell movement due to the actin cytoskeleton		
RARA	А	Рецептор ретиноевой кислоты, который необходим для роста клеток / The retinoic acid receptor is necessary for cell growth		

ной — 20,4%, p<0,05) [17]. Достоверное снижение частоты встречаемости ДНТ наблюдалось при использовании миониозитола в дозе 0,08 г/кг/сут, в то время как увеличение дозы до 0,16 г/кг/сут и даже до 0,5 г/кг/сут не приводило к существенному улучшению результата профилактики ДНТ [18].

Клинические наблюдения за группами пациенток с гестационным диабетом (ГД) подтверждают результаты экспериментальных исследований. Прием мио-инозитола снижает риск возникновения ГД даже у женщин с семейной историей диабета 2-го типа. Например, в проспективном рандомизированном плацебо-контролируемом исследовании группа пациенток получала 4 г/сут миоинозитола и 400 мкг/сут ФК, разделенные на 2 приема в сутки (n=110), начиная с конца I триместра. Пациентки в группе плацебо (n=110) получали только 400 мкг/сут ФК. Заболеваемость ГД была значительно ниже при приеме мио-инозитола — 6%, в то время как в контрольной группе — 15,3% (ОШ=0,35, p=0,04). При приеме мио-инозитола также были отмечены статистически значимое снижение частоты макросомии (масса плода >4000 г) и уменьшение средней массы плода в сторону середины интервала нормы [19].

Кроме того, в экспериментальных исследованиях были определены гены, опосредующие взаимосвязь риска ДНТ, дефицитов мио-инозитола и других микронутриентов, а также существование фолат-чувствительных и фолат-резистентных моделей ДНТ [20]. В экспериментах по делеции генов было установлено более 60 генов, инактивация которых приводит к формированию линий мышей с ДНТ. Эти гены встречаются и у человека. Анализ экспериментального материала с использованием метода анализа функциональных взаимосвязей [21, 22] показал, что не менее 19 из 60 генов кодируют белки и ферменты, активность или уровни которых существенно зависят от наличия определенных микронутриентных кофакторов (табл. 1) [23].

К микронутриентам, необходимым для профилактики ДНТ, относятся цинк, мио-инозитол, фолаты, магний, кальций и витамин А. Дефицит каждого из этих микронутриентов имитирует делецию соответствующего гена (т. к. активность соответствующего белка резко снизится при отсутствии кофактора). Первичная профилактика ДНТ ФК, мио-инозитолом, цинком и витамином А была продемонстрирована и в экспериментальных и в клинических исследованиях [24].

Нарушения нейруляции в линии мышей «закрученный хвост» (англ. curly tail, ген Ct/GRHL3) более, чем другие мутантные линии, напоминают ДНТ, наблюдаемые в акушерской практике. Данная линия (рис. 2) является фолат-резистентной, и эффективная профилактика ДНТ в этой линии может быть достигнута дотациями

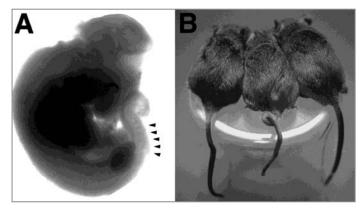


Рис. 2. Мыши линии «закрученный хвост». А. Эмбрион с экзэнцефалией, миеломенингоцеле (см. стрелки) и закрученным хвостом. В. Взрослые представители линии с различной степенью дефекта хвоста при одинаковой генетической предрасположенности к ДНТ

Fig. 2. Curly tail mice line. **A.** An embryo with exencephaly, myelomeningocele (see arrows) and swirling tail. **B.** Adult representatives of the lines with different degree of the tail defect with the same genetic predisposition to neural tube defect

<u>2018 T.1, №2</u> _____

Таблица 2. Мио-инозитол-зависимые белки человека, участвующие в процессах эмбрионального развития **Table 2.** Myo-inositol-dependent proteins of human, involved in the processes of embryonic development

Ген Gene	Белок Protein	Функция Function
AKT2	RAC-протеинкиназа RAC-protein kinase	Деление клеток, рост тканей, ангиогенез, правильное позиционирование нейронов Cell division, tissue growth, angiogenesis, correct positioning of neurons
ERBB4	Рецептор ERB ERB receptor	Дифференциация миокарда и миграция нейронов во время эмбрионального развития Differentiation of the myocardium and migration of neurons during embryonic development
ERN1,2	Сигналы эндоплазма-ядро Signals endoplasm-core	Mg-зависимый белок, регулировка апоптоза Mg-dependent protein, apoptosis regulation
FLNA,B,C	Филамины Filamins	Структура нейробласта, миогенез Neuroblast structure, myogenesis
MET	Рецептор фактора роста гепатоцитов The receptor of hepatocyte growth factor	Гаструляция, развитие и миграция предшественников нейронов, ангиогенез и формирование почек Gastrulation, development and migration of neuronal precursors, angiogenesis and kidney formation
PDGFRA	Рецептор PDGF PDGF receptor	Развитие скелета, закрытие нервной трубки The development of the skeleton, occlusion of the neural tube
PIP5K1C	Фосфатидилинозитолкиназа Phosphatidylinositol kinase	Формирование нервной трубки Neural tube formation
PLEKH01	Плекстрин 01 Pleckstrin 01	Дифференциация мышц, остеокластов Differentiation of muscles, osteoclasts
POU1F1	Гипофизарный фактор транскрипции 1 Pituitary transcription factor 1	Формирование передней доли гипофиза Anterior pituitary formation
PRKD1	Киназа D1 D1 kinase	Mg-зависимый белок, ветвление дендритов, ангиогенез, дифференцировка остеобластов Mg-dependent protein, the branching of dendrites, angiogenesis, differentiation of osteoblasts

мио-инозитола [25]. Другими важными микронутриентами для профилактики ДНТ в линии «закрученный хвост» являются ретиноевая кислота, витамины B_2 , С и D. В то же время профилактика ДНТ посредством фолатов, пиридоксина, витамина B_{12} или цинка не имела эффекта [26].

В эксперименте было показано, что ФК в сочетании с мио-инозитолом эффективно снижает риск врожденных дефектов через эпигенетические эффекты (метилирование ДНК) и сигнальный путь Wnt/катенин. В частности, сочетание ФК с мио-инозитолом предотвращает нарушение активности каскада Wnt алкоголем и способствует нормальной активации генов во время кардиогенеза. Например, впрыскивание 25% этанола в перепелиные яйца приводило к формированию аномалий сердечных клапанов у 68% эмбрионов, и только у 32% наблюдалось нормальное развитие. Совместное впрыскивание этанола и ФК (10 мкг/мл) приводило к нормальному кардиогенезу у 51% эмбрионов, а совместное применение ФК и мионозитола — у 62% эмбрионов, что близко к значению в 67% в контрольной группе [27].

Мио-инозитол существенно уменьшает частоту встречаемости ДНТ, даже при отсутствии дотаций фолатов. Эмбриопротекторные эффекты мио-инозитола проявляются в увеличении метаболизма липидов, стимулировании основного сигнального белка протеинкиназы С и повышении экспрессии рецепторов ретиноевой кислоты, таким образом, закрытие задней части нервной трубки происходит без задержки [28].

Молекулярно-биологические исследования позволили очертить круг мио-инозитол-зависимых белков, посредством которых и осуществляется эмбриопротекция мио-инозитолом (протеинкиназа С, рецепторы инозитол-1,4,5-трифосфата, ферменты инозитол-1,3,4-три-

фосфат-5/6-киназа, инозитол полифосфат-5-фосфатаза, фосфатидилинозитол-4-фосфат-5-киназа и рецептор тромбоцитарного фактора роста альфа) [23]. Например, рецепторы инозитол-1,4,5-трифосфата обеспечивают эффекты производных мио-инозитола и необходимы для развития пула стволовых клеток сердца в висцеральной мезодерме. Аномальное развитие данного ростка приводит к целому спектру дефектов выносящих сосудов сердца. Делеции генов инозитол-1,4,5-трифосфат рецепторов в эксперименте приводили к выраженной гипоплазии выносящего тракта сердца, правого желудочка и избыточному апоптозу клеток мезодермы [29]. Мутации гена IP3R1, найденные в человеческих популяциях, снижают активность фермента и приводят к врожденной спиноцеребральной атаксии 15-го и 29-го типов (номер по ОМИМ 147265) [30].

Систематический биоинформационный анализ миоинозитол-зависимых белков человека, участвующих в процессах эмбрионального развития (табл. 2), позволил получить результаты, сопоставимые с результатами систематизированных ранее экспериментальных и молекулярно-биологических исследований [2]. В частности, в результате анализа были установлены обсуждавшиеся ранее гены PIP5К1С (кодирующий фермент фосфатидилинозитол-4-фосфат-5-киназу, необходимый для синтеза внутриклеточной сигнальной молекулы фосфатидилинозитол дифосфата) и PDGFRA (рецептор тромбоцитарного фактора роста альфа, играющего важную роль в эмбриональном развитии, делении и миграции клеток сомита). Кроме того, в результате биоинформационного анализа были выявлены другие перспективные гены для дальнейших экспериментальных и клинических исследований пороков развития (см. табл. 2).

2018 T.1, №2

РМЖ, Мать и дитя Обзоры

Оценка клинической эффективности мио-инозитола для поддержки репродуктивного здоровья

Наиболее ярко клиническая эффективность миоинозитола для решения проблем репродукции была продемонстрирована у пациенток с СПКЯ. Участие миоинозитола в передаче сигнала от рецептора инсулина и осуществлении эффектов основных репродуктивных гормонов обеспечивает более полное вызревание ооцитов [31]. Например, в РКИ при прохождении циклов ИКСИ пациентки со СПКЯ и хроническим ановуляторным бесплодием получали комплекс мио-инозитола 4 г/сут и ФК 400 мкг/сут либо только ФК 400 мкг/сут в течение 3 мес. По сравнению с приемом только ФК сочетанное применение мио-инозитола и ФК обеспечивало достоверное увеличение числа фолликулов диаметром более 15 мм, рост числа активных ооцитов на фоне существенного снижения среднего числа незрелых ооцитов и повышения среднего числа эмбрионов хорошего качества (по шкале S1) [32].

Важно отметить, что добавление мио-инозитола к ФК у пациенток без СПКЯ, проходящих циклы ИКСИ, позволяет уменьшить число используемых зрелых ооцитов и сократить дозировку рекомбинантного ФСГ (рФСГ) без уменьшения числа клинических беременностей. В группе женщин без СПКЯ и с базальным уровнем ФСГ <10 МЕ/мл (n=100, <40 лет) пациентки получали рФСГ (начальная доза — 150 МЕ) в течение 6 дней. За 3 мес. до начала процедур ЭКО группа была рандомизирована на получение 4 г/сут мио-инозитола и 400 мкг/сут ФК (n=50) или только ФК 400 мкг/сут (n=50). Совместное использование мио-инозитола и ФК позволило снизить общее количество гонадотропинов, необходимое для достижения вызревания ооцитов, в среднем на 400 МЕ (p=0,05) [33].

В сравнительном многоцентровом исследовании была оценена эффективность мио-инозитола и ФК для улучшения качества ооцитов/эмбрионов и результатов цикла ЭКО у пациенток без СПКЯ. Пациентки опытной группы (n=133) получали мио-инозитол 1000 мг/сут и ФК 0,1 мг/сут, а пациентки контрольной группы (n=137) — плацебо. Общее количество зрелых ооцитов было значительно выше в группе мио-инозитол + ФК (12; 95% ДИ: 1–37), чем в группе плацебо (всего 8; 95% ДИ: 0–24) (p<0,001) [34].

В другом проспективном РКИ с участием женщин с СПКЯ, проходящих ЭКО, было также показано, что дотации мио-инозитол + ФК приводят к улучшению показателей оплодотворения и улучшению качества эмбрионов. За 2 мес. до ЭКО группа участниц была рандомизирована на группу плацебо (n=15) и группу «мио-инозитол + ФК» (4000 мг/сут мио-инозитола, 400 мкг/сут ФК, n=14). Из 233 ооцитов, отобранных в группе «мио-инозитол + ФК», оплодотворялись 136 (58,4%), тогда как только 128 из 300 отобранных ооцитов (42,7%) оплодотворились в группе плацебо. Продолжительность стимуляции составила 9,7±3,3 дня в группе «мио-инозитол + ФК» и 11,2±1,8 дня — в группе плацебо (p<0,05). Количество используемых единиц гормона рФСГ было ниже в группе «мио-инозитол + ФК» (1750 ед., плацебо — 1850 ед.) [35].

Метаанализ 6 РКИ (n=935) подтвердил, что прием комбинации «мио-инозитол + ФК» за 3 мес. до проведения ИКСИ способствовал повышению частоты клинической беременности у бесплодных женщин, проходящих

индукцию овуляции для ИКСИ или трансплантацию эмбриона *in vitro*. Пациентки контрольной группы принимали только ФК. Дотации комбинации мио-инозитол + ФК были ассоциированы со значительно повышенной частотой клинической беременности (p=0,03), более низкой частотой невынашивания (95% ДИ: 0,08–0,50, p=0,0006). Шансы получения эмбриона 1-й степени были выше (ОШ 1,8; 95% ДИ: 1,10–2,74, p=0,02), а риск формирования вырожденных ооцитов — ниже (ОШ 0,5; 95% ДИ: 0,11–0,86, p=0,02) на фоне дотаций мио-инозитол + ФК. Прием комбинации мио-инозитол + ФКтакжеспособствовалснижению суммарной дозыгормона рФСГ, необходимого для стимуляции овуляции (-334 ед., 95% ДИ: -591...-210 ед., p=0,001) [36].

Заключение

Анализ исследований свидетельствует о наличии важных резервов нормализации менструального цикла, восстановления чувствительности яичников к гормонам, поддержки противоопухолевого иммунитета, повышения качества ооцитов, вероятности наступления беременности. Очевидно, что в условиях выраженного полигиповитаминоза [37], повсеместного использования «антивитаминных» препаратов [38] и гипергликемического питания поддержка мио-инозитолом приобретает исключительную важность. Мио-инозитол позволяет не только преодолевать резистентность клеток к инсулину и глюкозе, но и поддерживать ряд сигнальных каскадов (рецепторов ГНРГ, ЛГ, ФСГ и др.), важных для овуляции, вызревания ооцитов, а также обеспечивать профилактику пороков развития (в т. ч. фолат-резистентных). Повысить обеспеченность мио-инозитолом можно, например, посредством приема препарата Миоферт (произведен по технологии GMP, содержит 1000 мг инозита (в виде мио-инозитола) и 200 мкг ФК в 1 пакетике-стике) в виде водного раствора. Для приготовления раствора для питья следует использовать только чистую питьевую воду комнатной температуры, растворение в молоке, соках, киселе недопустимо (т. к. это снизит биодоступность мио-инозитола из препарата).

Работа выполнена при участии гранта РФФИ 15-07-04143 в рамках диссертационного исследования А.Г. Калачёвой.

This work was supported by the Russian Foundation for Basic Research grant 15-07-04143 under thesis research by Alla G. Kalacheva.

Литература

- 1. Громова О.А., Торшин И. Ю. Витамины и минералы между Сциллой и Харибдой: о мисконцепциях и других чудовищах. М.: Издательство МЦНМО, 2013:693
- 2. Лиманова О.А., Громова О.А., Торшин И.Ю. и др. Систематический анализ молекулярно-физиологических эффектов мио-инозитола: данные молекулярной биологии, экспериментальной и клинической медицины. Эффективная фармакотерапия. 2013;28:32–41
- 3. Громова О.А., Торшин И.Ю. Магний и «болезни цивилизации». М.: ГЭОТАР-Медиа, 2018:800
- 4. Громова О.А., Торшин И.Ю., Калачёва А.Г., Тетруашвили Н.К. Роли миоинозитола в репродуктивном здоровье женщины. Повышение эффективности технологий экстракорпорального оплодотворения. РМЖ. Мать и дитя. 2018;1(1):88–95.
- 5. Громова О.А., Гончарова Е.А., Торшин И.Ю. и др. Перспективы использования мио-инозитола в предгравидарной подготовке женщин с поликистозом яичников и инсулинорезистентностью. Гинекология. 2014;16(1):58–65

<u>2018 T.1, №2</u>

- 6. Nordio M., Proietti E. The combined therapy with myo-inositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone. Eur Rev Med Pharmacol Sci. 201;16(5):575–581.
- 7. Unfer V., Carlomagno G., Dante G., Facchinetti F. Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials. Gynecol Endocrinol. 2012;28(7):509–515. DOI: 10.3109/09513590.2011.650660.
- 8. Giordano D., Corrado F., Santamaria A. et al. Effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome: a perspective, randomized, placebo-controlled study. Menopause. 2011;18(1):102–104. DOI: 10.1097/gme.0b013e3181e8e1b1. 9. Venturella R., Mocciaro R., De Trana E. et al. Assessment of the modification of the clinical, endocrinal and metabolical profile of patients with PCOS syndrome treated with myoinositol. Minerva Ginecol. 2012;64(3):239–243.
- 10. Rysz J., Bartnicki P., Błaszczak R. et al. Anti-inflammatory action of myoinositol in renal insufficiency. Pol Merkur Lekarski. 2006;20(116):180–183.
- 11. Han W., Gills J.J., Memmott R.M. et al. The chemopreventive agent myoinositol inhibits Akt and extracellular signal-regulated kinase in bronchial lesions from heavy smokers. Cancer Prev Res (Phila). 2009;2(4):370–376. DOI: 10.1158/1940-6207.
- 12. Melmed S., Lewin L.M., Bank H. Myo-inositol clearance in renal failure and in patients with normal kidney function. Am J Med Sci. 1977;274(1):55–59.
- 13. Cavalli P., Tonni G., Grosso E., Poggiani C. Effects of inositol supplementation in a cohort of mothers at risk of producing an NTD pregnancy. Birth Defects Res A Clin Mol Teratol. 2011;91(11):962–965. DOI: 10.1002/bdra.22853.
- 14. Beemster P., Groenen P., Steegers-Theunissen R. Involvement of inositol in reproduction. Nutr Rev. 2002;60(3):80–87.
- 15. Carlomagno G., Unfer V. Inositol safety: clinical evidences. Eur Rev Med Pharmacol Sci. 2011;15(8):931–936.
- 16. Akashi M., Akazawa S., Akazawa M. et al. Effects of insulin and myo-inositol on embryo growth and development during early organogenesis in streptozocin-induced diabetic rats. Diabetes. 1991;40(12):1574–1579.
- $17.\ Khandelwal\ M., Reece\ E.A.,\ Wu\ Y.K.,\ Borenstein\ M.\ Dietary\ myo-inositol\ therapy\ in\ hyperglycemia-induced\ embryopathy.\ Teratology.\ 1998;57(2):79-84.$
- 18. Reece E.A., Khandelwal M., Wu Y.K., Borenstein M. Dietary intake of myoinositol and neural tube defects in offspring of diabetic rats. Am J Obstet Gynecol. 1997;176(3):536–539.
- 19. Громова О.А., Торшин И.Ю., Тетруашвили Н.К., Сидельникова В.М. Нутрициальный подход к профилактике избыточной массы тела новорожденных. Гинекология. 2010;12(5): 56–64.
- 20. Copp A.J., Greene N.D. Neural tube defects: prevention by folic acid and other vitamins. Indian J Pediatr. 2000;67(12):915–921.
- 21. Торшин И.Ю., Громова О.А. Сосудистые заболевания сердца, мозга и молекулярные гены. Ассоциативные исследования и патофизиология сосудистых заболеваний. Трудный пациент. 2008;6(2-3):15–19.
- 22. Торшин И.Ю., Громова О.А. Сосудистые заболевания сердца, мозга и молекулярные гены. Часть 2: роль молекулярных генов в системе гемостаза и формировании атеросклероза. Трудный пациент. 2008;6(4):5–11.
- 23. Громова О.А., Торшин И.Ю., Лиманова О.А. Перспективы использования миоинозитола у женщин с поликистозом яичников и инсулинорезистентностью в программах прегравидарной подготовки к экстракорпоральному оплодотворению. Эффективная фармакотерапия. 2013;51:12–23.
- 24. Greene N.D., Copp A.J. Mouse models of neural tube defects: investigating preventive mechanisms. Am J Med Genet C Semin Med Genet. 2005;135(1):31–41.
- 25. Manning S.M., Jennings R., Madsen J.R. Pathophysiology, prevention, and potential treatment of neural tube defects. Ment Retard Dev Disabil Res Rev. 2000;6(1):6–14.
- 26. Seller M.J. Vitamins, folic acid and the cause and prevention of neural tube defects. Ciba Found Symp. 1994;181:161–173; 173–179.
- 27. Serrano M., Han M., Brinez P., Linask K.K. Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate. Am J Obstet Gynecol. 2010;203(1):75. e7-75.e15.
- 28. Greene N.D., Copp A.J. Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med. 1997;3(1):60–66.
- 29. Nakazawa M., Uchida K., Aramaki M. et al. Inositol 1,4,5-trisphosphate receptors are essential for the development of the second heart field. J Mol Cell Cardiol. 2011;51(1):58-66.
- 30. Synofzik M., Beetz C., Bauer C. et al. Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features. J Med Genet. 2011;48(6):407–412.
- 31. Серов В.Н., Торшин И.Ю., Громова О.А. Потриместровый подход к назначению витаминно-минеральных комплексов на основе систематического анализа биологической значимости витаминов и микроэлементов в системе мать-плацента-плод. Гинекология. 2010;12(6):24–34.
- 32. Ciotta L., Stracquadanio M., Pagano I., Carbonaro A., Palumbo M., Gulino F. Effects of myo-inositol supplementation on oocyte's quality in PCOS patients: a double blind trial. Eur Rev Med Pharmacol Sci. 2011;15(5):509–514.
- 33. Lisi F., Carfagna P., Oliva M.M. et al. Pretreatment with myo-inositol in non polycystic ovary syndrome patients undergoing multiple follicular stimulation for IVF: a pilot study. Reprod Biol Endocrinol. 2012;10:52. DOI: 10.1186/1477-7827-10-52.
- 34. Vartanyan E.V., Tsaturova K.A., Devyatova E.A. et al. Improvement in quality of oocytes in polycystic ovarian syndrome in programs of in vitro fertilization. Gynecol Endocrinol. 2017;33(sup1):8–11. DOI: 10.1080/09513590.2017.1399699.

- 35. Lesoine B., Regidor P.A. Prospective Randomized Study on the Influence of Myoinositol in PCOS Women Undergoing IVF in the Improvement of Oocyte Quality, Fertilization Rate, and Embryo Quality. Int J Endocrinol. 2016;2016:4378507.
- 36. Zheng X., Lin D., Zhang Y. et al. Inositol supplement improves clinical pregnancy rate in infertile women undergoing ovulation induction for ICSI or IVF-ET. Medicine (Baltimore). 2017;96(49):e8842. DOI: 10.1097/MD.000000000008842.
- 37. Лиманова О.А., Торшин И.Ю., Сардарян И.С. и др. Обеспеченность микронутриентами и женское здоровье: интеллектуальный анализ клинико-эпидемиологических данных. Вопросы гинекологии, акушерства и перинатологии. 2014;13(2):5–15.
- 38. Громова О.А., Лиманова О.А., Торшин И.Ю. Систематический анализ фундаментальных и клинических исследований как обоснование необходимости совместного использования эстрогенсодержащих препаратами пиридоксина. Акушерство, гинекология и репродукция. 2013;7(3):35–50.

References

- 1. Gromova O.A., Torshin I. Yu. Vitamins and minerals between Scylla and Charybdis: about misconceptions and other monsters. M.: Publishing house of MCNMO, 2013:693 (in Russ.).

 2. Limanova O.A., Gromova O.A., Torshin I.Yu. et al. A systematic analysis of the molecular-physiological effects of myo-inositol: data from molecular biology, experimental and clinical medicine. Effective pharmacotherapy. 2013; 28:32–41 (in Russ.).
- 3. Gromova OA, Torshin I.Yu. Magnesium and «diseases of civilization.» M.: GEOTAR-Media, 2018: 800 (in Russ.).
- 4. Gromova O.A., Torshin I.Yu., Kalacheva A.G., Tetruashvili N.K. The role of myoinositol in the reproductive health of women. Increase the effectiveness of in vitro fertilization technologies. RMJ. Mother and child. 2018;1(1):88–95 (in Russ.).
- 5. Gromova O.A., Goncharova E.A., Torshin I.Yu. et al. Prospects for the use of myoinositol in pre-gravity training of women with polycystic ovary and insulin resistance. Gynecology. 2014; 16 (1):58–65 (in Russ.).
- 6. Nordio M., Proietti E. The combined therapy with myo-inositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone. Eur Rev Med Pharmacol Sci. 201;16(5):575–581.
- 7. Unfer V., Carlomagno G., Dante G., Facchinetti F. Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials. Gynecol Endocrinol. 2012;28(7):509–515. DOI: 10.3109/09513590.2011.650660.
- 8. Giordano D., Corrado F., Santamaria A. et al. Effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome: a perspective, randomized, placebo-controlled study. Menopause. 2011;18(1):102–104. DOI: 10.1097/gme.0b013e3181e8e1b1.
- 9. Venturella R., Mocciaro R., De Trana E. et al. Assessment of the modification of the clinical, endocrinal and metabolical profile of patients with PCOS syndrome treated with myoinositol. Minerva Ginecol. 2012;64(3):239–243.
- 10. Rysz J., Bartnicki P., Błaszczak R. et al. Anti-inflammatory action of myoinositol in renal insufficiency. Pol Merkur Lekarski. 2006;20(116):180–183.
- 11. Han W., Gills J.J., Memmott R.M. et al. The chemopreventive agent myoinositol inhibits Akt and extracellular signal-regulated kinase in bronchial lesions from heavy smokers. Cancer Prev Res (Phila). 2009;2(4):370–376. DOI: 10.1158/1940-6207.
- 12. Melmed S., Lewin L.M., Bank H. Myo-inositol clearance in renal failure and in patients with normal kidney function. Am J Med Sci. 1977;274(1):55–59.
- 13. Cavalli P., Tonni G., Grosso E., Poggiani C. Effects of inositol supplementation in a cohort of mothers at risk of producing an NTD pregnancy. Birth Defects Res A Clin Mol Teratol. 2011;91(11):962–965. DOI: 10.1002/bdra.22853.
- 14. Beemster P., Groenen P., Steegers-Theunissen R. Involvement of inositol in reproduction. Nutr Rev. 2002;60(3):80–87.
- 15. Carlomagno G., Unfer V. Inositol safety: clinical evidences. Eur Rev Med Pharmacol Sci. 2011;15(8):931–936.
- 16. Akashi M., Akazawa S., Akazawa M. et al. Effects of insulin and myo-inositol on embryo growth and development during early organogenesis in streptozocin-induced diabetic rats. Diabetes. 1991;40(12):1574–1579.
- 17. Khandelwal M., Reece E.A., Wu Y.K., Borenstein M. Dietary myo-inositol therapy in hyperglycemia-induced embryopathy. Teratology. 1998;57(2):79–84.
- 18. Reece E.A., Khandelwal M., Wu Y.K., Borenstein M. Dietary intake of myoinositol and neural tube defects in offspring of diabetic rats. Am J Obstet Gynecol. 1997;176(3):536–539.
- 19. Gromova O.A., Torshin I.Yu., Tetruashvili N.K., Sidelnikova V.M. Nutritsialny approach to the prevention of overweight of newborns. Gynecology. 2010;12 (5):56–64 (in Russ.).
- 20. Copp A.J., Greene N.D. Neural tube defects: prevention by folic acid and other vitamins. Indian J Pediatr. 2000;67(12):915–921.
- 21. Torshin I.Yu., Gromova O.A. Vascular diseases of the heart, brain and molecular genes. Associative research and pathophysiology of vascular diseases. Difficult patient. 2008; 6(2-3): 15–19 (in Russ.).
- 22. Torshin I.Yu., Gromova O.A. Vascular diseases of the heart, brain and molecular genes. Part 2: the role of molecular genes in the system of hemostasis and the formation of atherosclerosis. Difficult patient. 2008; 6(4):5–11 (in Russ.).
- 23. Gromova O.A., Torshin I.Yu., Limanova O.A. Prospects of using myoinositol in women with polycystic ovary and insulin resistance in programs of pregravard preparation for in vitro fertilization. Effective pharmacotherapy. 2013;51:12–23 (in Russ.).

РМЖ, Мать и дитя Обзоры

24. Greene N.D., Copp A.J. Mouse models of neural tube defects: investigating preventive mechanisms. Am J Med Genet C Semin Med Genet. 2005;135(1):31–41.

25. Manning S.M., Jennings R., Madsen J.R. Pathophysiology, prevention, and potential treatment of neural tube defects. Ment Retard Dev Disabil Res Rev. 2000;6(1):6–14.
26. Seller M.J. Vitamins, folic acid and the cause and prevention of neural tube defects. Ciba Found Symp. 1994;181:161–173; 173–179.

27. Serrano M., Han M., Brinez P., Linask K.K. Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate. Am J Obstet Gynecol. 2010;203(1):75.e7-75.e15. 28. Greene N.D., Copp A.J. Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med. 1997;3(1):60–66.

29. Nakazawa M., Uchida K., Aramaki M. et al. Inositol 1,4,5-trisphosphate receptors are essential for the development of the second heart field. J Mol Cell Cardiol. 2011;51(1):58–66.
30. Synofzik M., Beetz C., Bauer C. et al. Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features. J Med Genet. 2011;48(6):407–412.

31. Serov V.N., Torshin I.Yu., Gromova O.A. Postmestrial approach to the appointment of vitamin-mineral complexes based on a systematic analysis of the biological importance of vitamins and trace elements in the mother-placenta-fetus system. Gynecology. 2010;12(6):24–34 (in Russ.).

32. Ciotta L., Stracquadanio M., Pagano I., Carbonaro A., Palumbo M., Gulino F. Effects of myo-inositol supplementation on oocyte's quality in PCOS patients: a double blind trial. Eur Rev Med Pharmacol Sci. 2011;15(5):509–514.

33. Lisi F., Carfagna P., Oliva M.M. et al. Pretreatment with myo-inositol in non polycystic ovary syndrome patients undergoing multiple follicular stimulation for IVF: a pilot study. Reprod Biol Endocrinol. 2012;10:52. DOI: 10.1186/1477-7827-10-52.

34. Vartanyan E.V., Tsaturova K.A., Devyatova E.A. et al. Improvement in quality of oocytes in polycystic ovarian syndrome in programs of in vitro fertilization. Gynecol Endocrinol. 2017;33(sup1):8–11. DOI: 10.1080/09513590.2017.1399699.

35. Lesoine B., Regidor P.A. Prospective Randomized Study on the Influence of Myoinositol in PCOS Women Undergoing IVF in the Improvement of Oocyte Quality, Fertilization Rate, and Embryo Quality. Int J Endocrinol. 2016;2016:4378507.

36. Zheng X., Lin D., Zhang Y. et al. İnositol supplement improves clinical pregnancy rate in infertile women undergoing ovulation induction for ICSI or IVF-ET. Medicine (Baltimore). 2017;96(49):e8842. DOI: 10.1097/MD.000000000008842.

37. Limanova O.A., Torshin I.Yu., Sardaryan I.S. and others. Micronutrient supply and women's health: an intellectual analysis of clinical and epidemiological data. Questions of gynecology, obstetrics and perinatology. 2014;13(2):5–15 (in Russ.).

38. Gromova O.A., Limanova O.A., Torshin I.Yu. Systematic analysis of fundamental and clinical studies as a rationale for the need for the combined use of estrogencontaining drugs with magnesium and pyridoxine preparations. Obstetrics, gynecology and reproduction. 2013;7(3):35–50 (in Russ.).

Сведения об авторах: ¹Торшин Иван Юрьевич — к.х.н., старший научный сотрудник лаборатории фармакоинформатики; ¹Громова Ольга Алексеевна — д.м.н., про-

фессор, ведущий научный сотрудник, научный руководитель института фармакоинформатики; ²Калачёва Алла Геннадьевна — к.м.н., доцент кафедры фармакологии; ³Тетруашвили Нана Картлосовна — д.м.н., профессор, заведующая отделением патологии беременных; ²Демидов Вадим Игоревич — к.м.н., доцент кафедры патологической анатомии. 1ФИЦ ИУ РАН. 119333, Россия, г. Москва, ул. Вавилова, д. 44, корп. 2. ²ФГБОУ ВО ИвГМА Минздрава России. 153000, Россия, г. Иваново, Шереметевский пр., д. 8. ³ФГБУ «НМИЦ АГП им. В.И. Кулакова» Минздрава России. 117997, Россия, г. Москва, ул. Академика Опарина, д. 4. Контактная информация: Громова Ольга Алексеевна, e-mail: unesco.gromova@gmail. сот. Прозрачность финансовой деятельности: никто из авторов не имеет финансовой заинтересованности в представленных материалах или методах. Конфликт интересов отсутствует. Статья поступила 18.09.2018.

About the authors: ¹Ivan Yu. Torshin — PhD in Chemistry, Senior Researcher of the Laboratory of Pharmacoinformatics; ¹Olga A. Gromova — MD, PhD, Professor, Leading Researcher, Science Head of the Institute of Pharmacoinformatics; ²Alla G. *Kalacheva — MD, PhD, Associate Professor of the Department* of Pharmacology; ³Nana K. Tetruashvili — MD, PhD, Professor, Head of the Department of Pathology of Pregnancy; ²Vadim I. Demidov — MD, PhD, Associate Professor of the Department of Pathological Anatomy. 1Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences. 44, bld. 2, Vavilova str., Moscow, 119333, Russian Federation. ²Ivanovo State Medical Academy. 8, Sheremetevsky ave., Ivanovo, 153000, Russian Federation. 3V.I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology. 4, Oparina str., Moscow, 117997, Russian Federation. Contact information: Olga A. Gromova, e-mail: unesco.gromova@gmail.com. Financial Disclosure: no author has a financial or property interest in any material or method mentioned. There is no conflict of interests. Received: 18.09.2018.

НАВСТРЕЧУ ЖИЗНИ

миоферт способствует

Улучшению функции яичников, метаболических и гормональных показателей

Восстановлению естественной овуляции

Улучшению результатов индукции овуляции

Улучшению функционального состояния и качества яйцеклеток

Вместе мы можем больше! www.miofert.ru