Russian Journal of Woman and Child Health
ISSN 2618-8430 (Print), 2686-7184 (Online)

Novel treatment modalities for pelvic inflammatory disease using immunomodulating therapy

Open accessCrossrefAntiplagiat


russian citation indexroad







Impact factor - 0,684*

* Impact factor according to the SCIENCE INDEX 2020

DOI: 10.32364/2618-8430-2021-4-2-149-154

Yu.E. Dobrokhotova, P.A. Shadrova

Pirogov Russian National Research Medical University, Moscow, Russian Federation

Pelvic inflammatory disease (PID) is a significant issue of public health due to its devastating effects on female reproductive health and fertility. Despite extensive development of medicine and the emergence of novel groups of antibacterial agents, the risks of antibacterial resistance rapidly grow, thus requiring complex treatment of infectious inflammatory disorders caused by bacterial flora. The modulation of immune response is the heart of recently developed treatment modalities for various diseases (infections, oncology etc.). A detailed understanding of molecular immunology contributes to the rational development of novel types of immunotherapy, which can be successfully introduced into clinical practice. Numerous findings demonstrate the efficacy of inosine pranobex for various diseases, in particular, in immunocompromised patients. This medication has proven itself due to good tolerability and the lack of serious side effects. Inosine pranobex being a  safe drug that can be used in many treatment schedules, including complex treatment for chronic PID with antibacterial agents.

Keywords: inosine pranobex, pelvic inflammatory disease, salpingo-oophoritis, infertility, immunotherapy, sexually transmitted infections, bacterial vaginosis.

For citation: Dobrokhotova Yu.E., Shadrova P.A. Novel treatment modalities for pelvic inflammatory disease using immunomodulating therapy. Russian Journal of Woman and Child Health. 2021;4(2):149–154. DOI: 10.32364/2618-8430-2021-4-2-149-154.


Editorial Board is grateful to LLC "Gedeon Richter Pharma" for the assistance in technical edition of this publication.

About the authors:

Yulia E. Dobrokhotova — Doct. of Sci. (Med.), Professor, Head of the Department of Obstetrics & Gynecology of the Medical Faculty, Pirogov Russian National Research Medical University; 1, Ostrovityanova str., Moscow, 117997, Russian Federation; ORCID iD 0000-0002-7830-2290.

Polina A. Shadrova — postgraduate student of the Department of Obstetrics & Gynecology of the Medical Faculty, Pirogov Russian National Research Medical University; 1, Ostrovityanova str., Moscow, 117997, Russian Federation; ORCID iD 0000-0002-3721-1421.

Contact information: Polina A. Shadrova, e-mail: Financial Disclosure: no authors have a financial or property interest in any material or method mentioned. There is no conflict of interests. Received 13.03.2021, revised 02.04.2021, accepted 19.04.2021.

1. Ross J., Guaschino S., Cusini M., Jensen J. 2017 European guideline for the management of pelvic inflammatory disease. Int J STD AIDS. 2018;29(2):108–114. DOI: 10.1177/0956462417744099.
2. Den Heijer C.D.J., Hoebe C.J.P.A., Driessen J.H.M. et al. Chlamydia trachomatis and the Risk of Pelvic Inflammatory Disease, Ectopic Pregnancy, and Female Infertility: A Retrospective Cohort Study Among Primary Care Patients. Clin Infect Dis. 2019;15:69(9):1517–1525. DOI: 10.1093/cid/ciz429.
3. Поликарпов А.В., Александрова Г.А., Голубев Н.А. Заболеваемость всего населения России в 2017 году. (Электронный ресурс.) URL: (дата обращения: 16.03.2021). [Polikarpov A.V., Alexandrova G.A., Golubev N.A. The incidence of the entire population of Russia in 2017. (Electronic resource.) URL: (access date: 16.03.2021) (in Russ.)].
4. Graesslin O., Verdon R., Raimond E. et al. Management of tubo-ovarian abscesses and complicated pelvic inflammatory disease: CNGOF and SPILF Pelvic Inflammatory Diseases Guidelines. Gynecol Obstet Fertil Senol. 2019;47(5):431–441. DOI: 10.1016/j.gofs.2019.03.011.
5. Soper D.E. Pelvic inflammatory disease. Obstetrics and Gynecology. 2010;116(2 Pt 1):419–428. DOI: 10.1097/AOG.0b013e3181e92c54.
6. Savaris R.F., Fuhrich D.G., Duarte R.V. et al. Antibiotic therapy for pelvic inflammatory disease (Review). Cochrane Database Syst Rev. 2020;8:CD010285. DOI: 10.1002/14651858.CD010285.pub3.
7. Taylor-Robinson D., Jensen J.S., Svenstrup H., Stacey C.M. Difficulties experienced in defining the microbial cause of pelvic inflammatory disease. Int J STD AIDS. 2012;23(1):18–24. DOI: 10.1258/ijsa.2011.011066.
8. Curry A., Williams T., Penny M.L. Pelvic Inflammatory Disease: Diagnosis, Management, and Prevention. Am Fam Physician. 2019;15;100(6):357–364. PMID: 31524362.
9. Chappell C.A., Wiesenfeld H.C. Pathogenesis, diagnosis, and management of severe pelvic inflammatory disease and tuboovarian abscess. Clin Obstet Gynecol. 2012;55(4):893–903. DOI: 10.1097/GRF.0b013e3182714681.
10. Brunham R.C., Gottlieb S.L., Paavonen J. Pelvic Inflammatory Disease. N Engl J Med. 2015;372(21):2039–2048. DOI: 10.1056/NEJMra1411426.
11. Palomino D.C., Marti L.C. Chemokines and immunity. Einstein (Sao Paulo). 2015;13(3):469–473. DOI: 10.1590/S1679-45082015RB3438.
12. Lehr S., Vier J., Häcker G., Kirschnek S. Activation of neutrophils by Chlamydia trachomatis-infected epithelial cells is modulated by the chlamydial plasmid. Microbes Infect. 2018;20(5):284–292. DOI: 10.1016/j.micinf.2018.02.007.
13. Faris R., Andersen S.E., McCullough A. et al. Chlamydia trachomatis Serovars Drive Differential Production of Proinflammatory Cytokines and Chemokines Depending on the Type of Cell Infected. Front Cell Infect Microbiol. 2019;26;9:399. DOI: 10.3389/fcimb.2019.00399.
14. Stephens R.S. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol. 2003;11:44–51. DOI: 10.1016/s0966-842x (02) 00011-2.
15. Yang C., Briones M., Chiou J. et al. Chlamydia trachomatis Lipopolysaccharide Evades the Canonical and Noncanonical Inflammatory Pathways To Subvert Innate Immunity. mBio. 2019;23;10(2):e00595–19. DOI: 10.1128/mBio.00595-19.
16. Skerlev M., Čulav-Košćak I. Gonorrhea: new challenges. Clin Dermatol. 2014;32(2):275–281. DOI: 10.1016/j.clindermatol.2013.08.010.
17. Stevens J.S., Criss A.K. Pathogenesis of Neisseria gonorrhoeae in the female reproductive tract: neutrophilic host response, sustained infection, and clinical sequelae. Curr Opin Hematol. 2018;25(1):13–21. DOI: 10.1097/MOH.0000000000000394.
18. Escobar A., Candia E., Reyes-Cerpa S. et al. Neisseria gonorrhoeae induces a tolerogenic phenotype in macrophages to modulate host immunity. Mediators Inflamm. 2013;2013:127017. DOI: 10.1155/2013/127017.
19. Tsevat D.G., Wiesenfeld H.C., Parks C., Peipert J.F. Sexually transmitted diseases and infertility. Am J Obstet Gynecol. 2017;216(1):1–9. DOI: 10.1016/j.ajog.2016.08.008.
20. Van Oostrum N., De Sutter P., Meys J., Verstraelen H. Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis. Hum Reprod. 2013;28(7):1809–1815. DOI: 10.1093/humrep/det096.
21. Taylor B.D., Darville T., Haggerty C.L. Does bacterial vaginosis cause pelvic inflammatory disease? Sex Transm Dis. 2013;40(2):117–122. DOI: 10.1097/OLQ.0b013e31827c5a5b.
22. Taylor-Robinson D., Boustouller Y.L. Damage to oviduct organ cultures by Gardnerella vaginalis. Int J Exp Pathol. 2011;92(4):260–265. DOI: 10.1111/j.1365-2613.2011.00768.x.
23. Swidsinski A., Verstraelen H., Loening-Baucke V. et al. Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis. PLoS One. 2013;8(1):e53997. DOI: 10.1371/journal.pone.0053997.
24. Fredricks D.N., Fiedler T.L., Marrazzo J.M. Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med. 2005;3;353(18):1899–1911. DOI: 10.1056/NEJMoa043802.
25. Gradison M. Pelvic inflammatory disease. Am Fam Physician. 2012;85(8):791–796. PMID: 22534388.
26. Majewska A., Lasek W., Janyst M., Mlynarczyk G. In vitro inhibition of HHV-1 replication by inosine pranobex and interferon-α. Acta Pol Pharm. 2016;73(3):637–644. PMID: 27476281.
27. Tobolska S., Terpilowska S., Jaroszewski J., Siwicki A.K. Genotoxicity and mutagenicity of inosine pranobex. J Vet Res. 2018;62(2):207–213. DOI: 10.2478/jvetres-2018-0030.
28. Tobólska S., Terpiłowska S., Jaroszewski J., Siwicki A.K. Influence of inosine pranobex on cell viability in normal fibroblasts and liver cancer cells. J Vet Res. 2018;62(2):215–220. DOI: 10.2478/jvetres-2018-0031.
29. Sliva J., Pantzartzi C.N., Votava M. Inosine Pranobex: A Key Player in the Game Against a Wide Range of Viral Infections and Non-Infectious Diseases. Adv Ther. 2019;36(8):1878–1905. DOI: 10.1007/s12325-019-00995-6.
30. Majewska A., Lasek W., Janyst M., Młynarczyk G. Inhibition of adenovirus multiplication by inosine pranobex and interferon α in vitro. Cent Eur J Immunol. 2015;40(4):395–399. DOI: 10.5114/ceji.2015.56960.
31. Lomnitzer R., Isoprinosine potentiation of human peripheral blood mononuclear cell response to mitogens: kinetics and effect on expression of the IL-2 receptor and the activity of interleukin 2. J Clin Lab Immunol. 1988;27: 91–96.
32. Nakamura T., Miyasaka N., Pope R.M. et al. Immunomodulation by isoprinosine: effects on in vitro immune functions of lymphocytes from humans with autoimmune diseases. Clin Exp Immunol. 1983;52:67–74.
33. Singh H., Herndon D.N. Effect of isoprinosine on lymphocyte proliferation and natural killer cell activity following thermal injury. Immunopharmacol Immunotoxicol. 1989;11:631–644. DOI: 10.3109/08923978909005391.
34. Lomnitzer R. Isoprinosine potentiation of human peripheral blood mononuclear cell response to mitogens: kinetics and effect on expression of the IL-2 receptor and the activity of interleukin 2. J Clin Lab Immunol. 1988;27:91–96.
35. Lasek W., Janyst M., Wolny R. et al. Immunomodulatory effects of inosine pranobex on cytokine production by human lymphocytes. Acta Pharm. 2015;65(2):171–180. DOI: 10.1515/acph-2015-0015.
36. Nakamura T., Miyasaka N., Pope R.M. et al. Immunomodulation by isoprinosine: effects on in vitro immune functions of lymphocytes from humans with autoimmune diseases. Clin. Exp. Immunol. 1983;52:67–74.
37. Wiranowska-Stewart M., Hadden J.W. Effects of isoprinosine and NPT 15392 on interleukin-2 (IL-2) production. Int. J. Immunopharmacol. 1986;8:63–69. DOI: 10.1016/0192-0561 (86) 90074-3.
38. Petrova M., Jelev D., Ivanova A., Krastev Z. Isoprinosine affects serum cytokine levels in healthy adults. J Interferon Cytokine Res. 2010;30(4):223–228. DOI: 10.1089/jir.2009.0057.
39. Ahmed R.S., Newman A.S., O’Daly J. et al. Inosine acedoben dimepranol promotes an early and sustained increase in the natural killer cell component of circulating lymphocytes: a clinical trial supporting anti-viral indications. Int Immunopharmacol. 2017;42:108–114. DOI: 10.1016/j.intimp.2016.11.023.
40. Diaz-Mitoma F., Turgonyi E., Kumar A. et al. Clinical improvement in chronic fatigue syndrome is associated with enhanced natural killer cell-mediated cytotoxicity: the results of a pilot study with Isoprinosine. J Chronic Fatigue Syndr. 2003;11(2):71–95. DOI: 10.1300/J092v11n02_06.
41. Majewska A., Lasek W., Przybylski M. et al. Interferon-α and inosine pranobex-mediated inhibition of reploication of human RNA viruses in vitro. Med Dosw Mikrobiol. 2016;68(1):64–71. PMID: 28146624.
42. McCarthy M.T., Lin D., Soga T. et al. Inosine pranobex enhances human NK cell cytotoxicity by inducing metabolic activation and NKG2D ligand expression. Eur J Immunol. 2020;50(1):130–137. DOI: 10.1002/eji.201847948.

License Creative Commons
This work is licensed under a Creative Commons «Attribution» 4.0 License.
Previous paper
Next paper

Register now and get access to useful services:
  • Загрузка полнотекстовых версий журналов (PDF)
  • Медицинские калькуляторы
  • Список избранных статей по Вашей специальности
  • Видеоконференции и многое другое

С нами уже 50 000 врачей из различных областей.

Fatal error: Call to undefined function get_registration_form_description_popup() in /home/c/cb72209/wchjournal/public_html/en/include/reg_form.php on line 89